- One group was instructed to reduce total fat to 30% of calories (from about 35%) and replace saturated fat (SFA) with polyunsaturated fat (PUFA).
- The second group was told to double grain fiber intake.
- The third group was instructed to eat more fatty fish or take fish oil if they didn't like fish.
- The remaining three were control groups that were not advised to change diet; one for each of the first three.
Here's what the authors have to say about it:
Five randomised trials have been published in which a diet low in fat or with a high P/S [polyunsaturated/saturated fat] ratio was given to subjects who had recovered from MI. All these trials contained less than 500 subjects and none showed any reduction in deaths; indeed, one showed an increase in total mortality in the subjects who took the diet.So... why do we keep banging our heads against the wall if clinical trials have already shown repeatedly that total fat and saturated fat consumption are irrelevant to heart disease and overall risk of dying? Are we going to keep doing these trials until we get a statistical fluke that confirms our favorite theory? This DART paper was published in 1989, and we have not stopped banging our heads against the wall since. The fact is, there has never been a properly controlled clinical trial that has shown an all-cause mortality benefit for reducing total or saturated fat in the diet (without changing other variables at the same time). More than a dozen have been conducted to date.
On to fish. The fish group tripled their omega-3 intake, going from 0.6 grams per week of EPA to 2.4 g (EPA was their proxy for fish intake). This group saw a significant reduction in MI and all-cause deaths, 9.3% vs 12.8% total deaths over two years (a 27% relative risk reduction). Here's the survival chart:
Balancing omega-6 intake with omega-3 has consistently improved cardiac risk in clinical trials. I've discussed that here.
The thing that makes the DART trial really unique is it's the only controlled trial I'm aware of that examined the effect of grain fiber on mortality (without simultaneously changing other factors). The fiber group doubled their grain fiber intake, going from 9 to 17 grams by eating more whole grains. This group saw a non-significant trend toward increased mortality and MI compared to its control group. Deaths went up from 9.9% to 12.1%, a relative risk increase of 18%. I suspect this result was right on the cusp of statistical significance, judging by the numbers and the look of the survival curve:
You can see that the effect is consistent and increases over time. At this rate, it probably would have been statistically significant at 2.5 years. This result is consistent with short term trials I've found showing that wheat bran causes insulin resistance. In one, feeding five healthy subjects wheat bran for 7 weeks in addition to a controlled diet initially reduced blood glucose levels but resulted in insulin resistance, insulin hypersecretion and reactive hypoglycemia by the end of the seven weeks. Other trials show a non-significant trend toward insulin resistance on a whole-grain rich diet. The longer the trial, the stronger the effect.
I think the problem with whole grains is that the bran and germ contain a disproportionate amount of toxins, among which are the lectins. I've speculated before that grain lectins could contribute to leptin and insulin resistance. The bran and germ also contain a disproportionate amount of nutrients. To have your cake and eat it too, soak, sprout or ferment grains. This reduces the toxin load but preserves or enhances nutritional value. Wheat may be a problem whether it's treated this way or not.
Subjects in the studies above were eating grain fiber that was not treated properly, and so they were increasing their intake of some pretty nasty toxins while decreasing their nutrient absorption. Healthy non-industrial cultures would never have made this mistake. Grains must be treated with respect, and whole grains in particular.
No comments:
Post a Comment